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So we were developing a dynamical system theory for flow instability using DNS results 

and looking at the flow past a circular cylinder, we have shown here, the computed lift 

coefficient variation with time, for three different Reynolds number, 60, 100 and 250. 

There are certain features that immediately come to the fore. The number one is that, you 

see that, with increase in Reynolds number, equilibrium amplitude increases. 
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The other thing that you also notice is that, there are certain interesting features. For 

example, this saturation amplitude variation with time is very minimal for higher 

Reynolds number, but while you look at Re equal to 60, although one would expect from 

Landau’s theory that, you would have attained an equilibrium amplitude, but it is not so. 

You can see a quite a bit of jagged edges and it is a, something specific about this 

particular lower Reynolds number, that is where you see most of this variation. So, we 

will like to make some comments, which we have stated here that if we increase, well, if 

we decrease Reynolds number we see more and more number of modes present. If it was 

just a single mode, then, we would have seen a very nicely developed homogenous 

amplitude variation. For example, for Re equal to 60, we saw that, even in the 

equilibrium stage, you have a significant variation of the amplitude; that implies that, 

there are more than one modes present is it not. So, that is what we are saying, presence 

of multiple modes are noted with decreasing Reynolds number. 

For this reason, we will focus our attention to the results at Re equal to 60, to see what 

this multiple modes are doing and we will also develop what is called as a Landau-

Stuart-Eckhaus- equation. We kind of resurrected this study, a year and half ago, to see 

that, unlike what Landau-Stuart- equation is, that talks about only a presence of a single 

dominant mode; now, if we assume there are more than one modes, then, how do we 

account for it. So, we developed a kind of a variation, which was originally proposed in a 



monograph by Eckhaus, but largely forgotten; but we want to see, how we can make use 

of that. 
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Now, to make use of that, we are basically, talking about the variation of the instability 

modes with time; that is what your Landau equation is, but we have started discussing 

about POD - proper orthogonal decomposition and this is the way that, we go through. I 

have just jotted down the steps. Let us say, we solve the vorticity transport equation in a 

time horizon span between t 1 and t 2. Then, we can spilt the instantaneous value of the 



vorticity into two parts; a mean or an equilibrium part plus a variation. The mean part is 

defined as some kind of a time average. So, this is the time interval over which the data 

has been obtained. And, we take this and obtain this, omega mean. Having obtained the 

omega mean, it is straightforward to obtain the disturbance quantity which is nothing, but 

the instantaneous realization minus this mean. 
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So, let us, now, briefly talk about what that method of snapshot-wise which was 

developed by Sirowich. What we do is, the disturbance vorticity that we have obtained 

here, represented in a Galerkin (( )). So, what is it, is some kind of a splitting the variable 

variation, with respect to space and time, into a time depend amplitude times a space 

dependent function. So, what we are doing, we are representing the total disturbance 

quantity in terms of, let us say m such snapshots. So, we take pictures. We have the 

simulation, either you have done it through experiments, better be, you do it with 

numerics, because there, you will have more control. Then, what you do is, you try to 

construct, what is called as a covariance matrix of this disturbance field. So, that element 

of that covariance matrix is called here as R ij. So, that is obtained by taking the snapshot 

of the disturbance field at time t i and the snapshot taken at time t j. So, what we are 

going to do is, basically, we are taking a product of the two functions at this two times, 

integrate over the whole domain; your x vector indicates your, the domain.  



What I am showing you here is in terms of a 2D simulation; that is why we are talking 

about the elementary volume or elementary area as d 2x, but you could extend the same 

idea, for three dimensional flow field as well. 
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Well, you could trivially also do it for one d. now, what happens is this R ij is obtained 

by application of Hilbert Schmidt theory, in calculus of variation, which we are not 

going to do, but which states the following that, if I have this (( )) of time dependent 

amplitude times this, that space dependent function, actually works out as a Eigen 



function of this equation. So, this is that covariance matrix; this is the Eigen function phi 

m; lambda denotes your Eigen value. This is a fairly well developed theory. So, what we 

are going to do is, we have obtained the disturbance field; from there we will construct 

this. Once we have this, finding out the Eigen value of a matrix is very easy. These days, 

you do not even have to, probably write your own; there are many readily available tools, 

available to calculate the Eigen values and Eigen functions. So, that is what you would 

be doing. So, solving this equation, you will simultaneously be obtaining lambda, as well 

as the Eigen functions. 

What does this Eigen values give us? These Eigen values, tells us the probability of the 

occurrence of those Eigen functions. And, if I am, all, sum up all this Eigen values, then, 

that will be the, providing the total quantity that is under investigation. What is the total 

quantity under investigation? So, this is like, basically, a square of vorticity here; that is 

what we call as the enstrophy.  
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So, enstrophy field, that will be obtained in terms of the product of this functions. So, 

lambda is a very good measure of the enstrophy content of the disturbance field. So, this 

is how we are going to live with; we are performing the analysis, POD analysis by 

focusing our attention on the flow, for Re equal to 60 and I explained to you, what is our 

main incentive; we are trying to establish why we get multiple Hopf bifurcation; multiple 

Hopf bifurcation due to what? Is it due to, say, qualitatively different instabilities and 



different Reynolds number, and when this instabilities occur, they are still dominated by 

this corresponding single mode, or what we saw in terms of the time history of the lift 

and what we saw for Re equal to 60; there was presence of multiple modes. So, may be 

all this multiple modes are present and they selectively dominate in different ranges of 

Reynolds number and 60 Reynolds number case was very specific, where we saw a 

visual signature of such multimodal presence. So, that is what we are going to do. That, 

by and large, if you look at, instead at the highest Reynolds number, that we have shown 

at 250, we get predominantly a single frequency; while in case of 60, Re equal to 60, we 

have multiple frequencies present. 
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So, that is what we are talking about here. You can see, if it was dominated by a single 

mode, you would have had a, say a nice envelope, not a jaggedy envelope that we are 

seeing here. So, that being the motivation for focusing your attention for the results of Re 

equal to 60, we will go ahead and we will see what we can do about it. Even when we 

take the results for this Re equal to 60, what we are going to do is, basically, study the 

same data, but over different time ranges. So, t 1, t 2, I will purposely choose, over 

different time ranges. Why we want to do it, because, you see, study of POD as a tool 

has been gone off on a particular route to exploit its, I would say, engineering usage. For 

example, like, let us say, you are listening to a piece of music and it occupies some 

amount of memory. 

Now, what I could do is, I could take that signal and I can do a, kind a of a model 

decomposition and if I have, let us say, 1000 modes and I see that, most of the signal 

noise is contained within first 10 modes, then, I can do this model decomposition and 

only store ten modes. And, what happens? Instead of, let us say, 10 megabytes, I can get 

the same quality of signal; it is only with very good acoustics or very discerning ears, 

people can distinguish between this 10 modes and 1000 modes. But by and large, in a 

commercial scenario, this 10 modes will do well, and this is what people have been 

doing, in one of the applications; data compression; massive saving. 



Similarly, people have been also using POD as a tool to control flows. If I understand 

that, this 10 modes are most important, then, I should be able to control those 10 modes, 

instead of worrying about 1000 modes. I can develop strategies to control this. So, what 

has happened is, people have been talking about, mostly from these aspects; exploiting 

their engineering usage. Thereby, people are not too particularly interested about seeing 

what happens during the transients, like spatially, in the context of fluid mechanics, you 

have initially a very large transient, and then, the flow settles down to some kind of a 

statistical stationarity. So, if you are interested in looking at, only the statistically 

stationary position of the signal, there may not be a much of a motivation or incentive to 

look at the transients. 
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However, as I explained to you that, our point of view is totally to decide for the physics 

of the phenomenon of instability. So, we want to study, how we get to that statistical 

stationary state; that information may be embedded to the system, what happens during 

the transient. For that reason, what we will be talking about, we will take the same time 

series and we look at three different time intervals and to find out what is happening. 
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The results should convince us that, we would be having quite a bit of a success. So, let 

us, basically, focus our attention to this flow past a cylinder at Reynolds number of 60. 

We have actually done a simulation from, let us say, 0 to 430; that I will call it as case C. 

So, that is the full trace, time trace. What we can look at, we can look at a subset of it, 

350 to 430, where you may have arrived at, at that statistically stationary part; so, that is 

your case B. So, by 350, all the transients would have gone, but then, we can also take a 

case, which I call it as case A, which will have some bit of late stages of transients plus 

the equilibrium state. So, let us look at this kind of things, and then, we can perform this 



analysis, obtain this lambdas. And, this table actually shows you the lambdas, for this 

three different time ranges. When I look at the full time series, then, I see the Eigen 

values given by this. These are raw Eigen values.  

Now, you may notice that, there are some missing spots. I will explain why it is so. 

Historically, the early practitioners of POD, in this particular field, spatially about flow 

past bluff bodies, what they noticed? They notice that, you get this Eigen functions, they 

kind of occur in pair. And, this pair formation is quite significant. However, sometimes, 

in the early part of this decade, a (( )) Noack and his group from Germany, they 

discovered that, talking about this modal behavior, in terms of these pairs, is not 

adequate; there is something that sticks out, which they called as the shift mode. So, 

what it means is that, if I look at the behavior of the dynamical system without the shift 

mode, they will be just about varying about a 0 mean, but when you look at the 

experimental data, we will be seeing, as if there is a kind of a mean shift. So, there has 

been a shift in the mean flow field. To explain that, they modeled what is called as this 

shift mode. However, in contrast to that effort of Noack, what we are doing here, we are 

not doing any kind of modeling; we are taking our full DNS data and then, just 

performing the POD analysis, as it has been proposed here. 

What we notice that, whenever we have the shift modes, they do not occur in pair; they 

occur individually. So, what I find here, this third mode is one such isolated mode, which 

does not form a pair. That is why, we leave a blank here. Then, we have another pair 

followed by a single mode, another single mode here and so and so forth. And, you also 

notice that, when you have the pair formation, the Eigen values kind of have a similar 

magnitude. So, looking at this data set itself, you will make out, which is forming pair 

with what; like the first is forming pair with the second; this one is forming pair with this 

and so on and so forth; while this last two, thirteenth and fourteenth, also form a pair. 
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Now, this is for the full time series. Suppose, I look at only the equilibrium state, look at 

the data set from 350 to 430; then, what we notice, it is only a story of three pairs; 

nothing else. And, you can ask me that, why did I put all these blanks here. That is 

because of the essential nature, because this is the most predominant one. So, that better 

come there and you also know that, there is this hierarchy of this Eigen values. Higher up 

the position of Eigen value, more energy it contains; because, what we could do is, we 

could look at a cumulative enstrophy distribution. That basically gives you, which I may 

call by, let us say, number epsilon j, which would be written as some lambda j divided by 

summation of all lambda k, k going from 1 to m. You understand why it is m, because 

we have taken m snapshots; it is a m dimensional metrics. So, I will have m Eigen 

values. 
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So, that is what we are going to do. So, when we look at the equilibrium state, we only 

have three pairs. When we look at this particular case A, which is a mixture, and mixture 

of late transient and the equilibrium state, we obtain a pair here; we also obtain a shift 

mode and then, we have a another pair here, another pair there. Now, what we need to 

look at here is, how we get this POD perform, that, when I look at case C, I am also 

including the impulsive start of the flow; at time t equal to 0, the flow was considered 

inviscid; that was our initial condition. And then, we saw how the flow picked up it is 

viscous action, so, that is what we are doing here. How do we perform this POD? How 



densely we take the data? What we notice here that, here we have taken a 5 snapshots, 

taken and you need time interval. So, if I am talking about 0 to 430, I have taken a 

snapshots of 430 into 5. 

So, you can see, it is more than 2000 snapshots are taken. This is significantly different 

than, what people have been doing before. Even we did some of those POD studies for 

bypass transition, as I showed you earlier, when we were looking at vortex induced 

instability by a periodic vortices.  What we did there, we took only about 10 snapshots or 

20 snapshots, in a interval of 10, but here, we are talking about taking 5 snapshots in unit 

time interval. This is important. This is important because, irrespective of the accuracy 

with which you are doing your direct numerical simulation, the sampling rate of the 

snapshots will tell you, what is the frequency range, you are able to display with the 

POD. If you take too few, then, within the (( )) limit, you will be getting only very few 

peaks. 
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So, that is why, sometimes, even in recent times, I think we are even doing PODs, where 

we are taking what, about 40 snapshots in a unit time interval, 40. So, you can see, and 

please do understand that, taking insufficient sampling rate will always mislead you into 

drawing wrong conclusion. So, it is better, that you go on the side of caution and have 

more data than less. So, this is something that we need to understand. Now, we have 

already stated some of this things that, for example, the case B encompasses the range 



from 200 to 430, which partly includes the late transient and as well as the saturation 

stage of the flow evolution; while this particular time interval, 350 to 430, that is a case 

A, it only contains a equilibrium stage. And, the total enstrophy content during the 

equilibrium stage requires very fewer modes, for it is correct description, as compared to 

any case that included transient. In all these things that I have shown you, here, most of 

the time, we have accounted for the total enstrophy content, in those retained modes, to 

that level of about 95 percent. 
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So, what happens is, for the case A, those 6 modes accounted for 95 percent. That is why 

we did not go any further. And now, if I look at all the cases that, that is what we are 

saying that, if we take, go about to first 14, 15 modes, then, we account for the most of 

the enstrophy and the higher modes keep on contributing, incrementally smaller and 

smaller quantum. So, that is what we need to understand. This convention of identifying 

modes pair-wise, was used by this group Deane, Karniadakis and Noack et al. This is the 

work that I was talking to you about. Noack’s work is one of the most interesting and 

outstanding work in the last one decade, and…Well, all of them thought, you need to 

worry only about the primary modes. If there are non pair-forming modes and Noacks’ 

only talked about one such mode; it is one such mode. But, you saw the table that we 

projected. 
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When we took the data from 0 to 430, we had many isolated modes. In fact, in that 14, 

we had about 4 such modes. So, we do not call them, these modes as shift modes; we 

have classified the POD modes into the following group. One is what we call as the 

regular modes; while regular in the sense, what everybody thought originally would be, 

they are, basically, caused by pairs. Then, we talk about those modes, which do not form 

pair; this we call anomalous modes and here, in anomalous modes also, we subdivide 

into two groups. Anomalous modes of a first kind, which will call as t 1 mode; this we 

call as the r mode, and we are going to talk about a third classification, which is also 

anomalous modes, but they do form pairs. 
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So, this t 2 mode that we are talking about, they also form pair. Why we are calling these 

as a anomalous mode is simply for the reason that, their time variation, when we relate 

this POD modes to the corresponding instability modes, they will not follow Stuart 

Landau equation; that is why we are calling anomalous. Whereas, regular modes, we can 

show, as we have seen from the c l plot that, it starts off with a linear instability and 

saturates; that is your Stuart Landau equation. So, this regular modes follow that kind of 

variation, whereas, t 1 and t 2 modes will not do that. And, what is the difference 

between t 1 mode and the shift mode? Noack predicted only one single t 1 mode and he 

assumed, that mode is present at all time. 

Now, we are going to see results that, this anomalous mode of the first kind, they appear 

singly all right, but number one, they do not appear as one; there are more than one 

modes, like what you would see in case C, when we take the data from 0 to 430, and 

then, secondly, we can also see that, they do not necessarily remain invariant with time. 

This anomalous mode of the first kind, they are strict function of time. So, if I look at the 

flow past a cylinder, this is what is always observed; modes 1 and 2 will form a pair and 

the modes will be roughly 90 degree phase apart. Now, this might raise a query from 

your side, why it is roughly 90 degree and not exactly 90 degree? While we are talking 

about orthogonal decomposition, so, what does that orthogonality mean?  



Orthogonality would imply strict 90 degrees; but you recall also, what Kosambi started 

off with his motivation that, you have a Stochastical dynamical system; you are 

projecting it into a deterministic basis, which are orthogonal. So, if I look at some of 

those modes, which form pair and the phase difference is not perfectly 90 degree, that 

shows that, even this pairs are contaminated by stochasticity. So, that is the main issue. 

We need to understand that. This work done by Deane and ((quarters)) they proposed 

that, what you see as the vortex shedding, is due to the interaction between the leading 

pair of Eigen modes; that is what it is; a 1 phi 1 and a 2 phi 2. And then, they said, the 

way they interact, that defines the traveling nature of the shed vortices. 
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This is what I have been telling you that, Noack et al were the first to deviate from the 

earlier work and POD by stating that, the dynamics of the wake is determined by the 

presence of a mode, shift mode, which is a solitary mode, does not form a pair. 
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So, this is what we said already that, if I look at the POD modes, and they are pairing, 

then, we will call them as regular modes, when they follow Stuart-Landau-equation. If 

they occur in pair and do not follow Stuart Landau equation, then, I will not call them as 

regular mode; I will call them as the t 2 modes. So, this is the taxonomy. So, this is your 

definition of anomalous modes. Modes appearing alone are, or do not follow the time 

variation given by Landau equation, call them as anomalous modes. 
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So, whenever I will have a anomalous mode which appears alone, the next line I will put 

a dot; that is what I did when I plotted in the table. Whenever I saw a single mode, I left 

a dot, blank and then, I did the counting. So, when I say, there are 14 modes, that does 

not mean, the, all the 14 elements are filled up; there would be say 1, 2 present and 3 is 

there, 4 is missing; then, I could again have the fifth mode, sixth missing and so on and 

so forth. Now, if I calculate this lambdas and plot them; what am I doing, I am actually 

summing up this epsilon js slowly; so, for the three dataset, I am showing you the result. 

The red curve corresponds to the full data set from 0 to 430. 

So, the first mode contains about 30 percent of the total; the next one also contains 

somewhat 30 percent. So, this two together, accounts for 60 percent of the total 

enstrophy. The third mode takes you there, up to about, let us say, 84, 85 percent and 

then, slowly it goes up. And, if I want to look at this, this is almost, say 99 percent. This, 

when I take the full data set, it approaches there, requiring more and more number of 

modes. Whereas, if you look at the pure equilibrium state, where we have taken from 

350 to 430, then, you see we reach that 99 percent, is in the first 6 modes only. 

(Refer Slide Time: 34:46) 

 



(Refer Slide Time: 34:51) 

 

You also noticed that, what we obtained there, we just simply have one pair, 1, 2; then, 

we have another pair, 5, 6 and the last mode was 13, 14; because we said, look , 

whatever that the last one accounts for the 99 percent, that will be in the first 14 modes. 

So, that is what we are going to get; whereas, the intermediate data set between 200 and 

430, we see, that is the way it is. So, you see, you having now, a very powerful tool to 

explain how the disturbance vorticity field is, in terms of this lambda. And, what we can 

do is, having obtained the lambda, I can solve this equation and obtain this Eigen 

functions. And, what this Eigen functions are? This Eigen functions are, functions of 

both space dimensions. So, I am going to get a spatial portrait. And, this is what we are 

showing you, the data, the 5 functions for the case of 0 to 430, when we have taken the 

full data set. 

What you notice is, mode 1 and mode 2 looks like this. And now, you have no reason to 

suspect, why we paired them together; they look almost same. Now, you see that, why I 

said, that to draw a composite picture, looking at one subcomponent is not good enough; 

lambda gave us some information; Eigen functions gives a something more, that is very 

interesting. Now, we can see, why we paired them together. This looks like a 

complement. Then, you can very clearly see the complementary nature. These are 

essentially what, vorticity information as a function of space. And, the positive vorticity 

is shown by the solid line, and the negative ones are shown by the dotted line.  



You can see a kind of a shift, of one with respect to other by 90 degrees; that is why, 

where you have, see, in this case as positive, there you will see negative. So, thus, this is 

a complementary picture, that is what you are doing. And, you see, this is the so called, 

the t 1 mode or the shift mode, the first shift mode, that is what we get. And, this shift 

mode is qualitatively different than what you see as a regular modes; that is why we 

would call it a anomalous modes; they are not the same as we see here or there. And, this 

is again a pair; this is again a pair and you can also see the maximum, minimum ranges 

are given; they are almost similar. 
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When we look at the pairs and there is a kind of a similarity in the vortical structures too. 

This is the fifth and this is the sixth mode; fourth mode is missing. Now, we have the 

next isolated mode; we are calling it as a seventh mode. So, eighth would be missing. So, 

this is the way, that we are going to see and you also understand, the way we plotted 

those, that, as the mode number kept increasing, the relative contribution kept on 

shrinking. So, do not be too much enamoured by interesting looking structure, because 

that may actually contribute to very little, but at the same time, we must understand that, 

we are doing a instability study. So, one of the cornerstone of instability study is, small 

cause having large effect. So, that is why, we keep showing, as much of the energy 

content, modes that is possible, enstrophy content, modes that is possible, because some 

of them may decide upon what is going to happen and you see, this is the spatial 

variations. So, the next mode is also an isolated mode, ninth mode. So, 10 is missing; 



then, we have a, another isolated mode, which we call as mode 11. So, 12 is missing; 

then, we have the, finally, the pair 13 and 14. 
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So, you have now, a fairly a decent idea, how we went about forming this composite 

picture. So, we will look at it, as we go along. So, we are not too interested about this, 

only the space variation; we would like to also, get in to the time variation; that is, that is 

important. And, what is the time variation? Time variation is given by this. So, what we 



say, this is our Eigen functions, POD Eigen functions and this is what, we will call it as 

POD amplitude functions.  
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Now, what we just now seen, we have seen how lambdas vary, how phi js vary, but we 

still have not talked about the time variation. So, we need to do that. To do that, we need 

to find out what this POD amplitude functions is going to be. We have talked about all of 

this. We just want to point out one thing about the case C that, phi 1, phi 2, phi 5, phi 6 

represents regular modes, showing alternating vortical structures in the wake and what 



we notice, though, this is 13 and 14 forms a pair, but their time variation is not like what 

we are used to seeing. What we are used to seeing is that, the sketch that we have shown 

before; the Stuart Landau equation would show this kind of a time variation, which will 

pick up from this and then, will reach this equilibrium state. So, that is your Stuart 

Landau mode. This 13 and 14, if I look at the time variation, then, they will not show this 

kind of linear instability followed by non-linear saturation.  
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This is somewhat different. How do we know this time variation is? Well, that should 

come from this. So, we have to get this. 
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Now, if we call this functions as orthogonal functions, then, what I could do, I could 

obtain this a js, 8, a js are a m of t; how do we do that? How do we do that? They are 

orthogonal. So, if I have this, I multiply this by phi a m and integrate, then, what would I 

get. So, if I multiply, if I take this description, if I take this description and multiply this, 

let us say, by phi j and then, integrate over the whole domain, what do I get from this 

side? Only, I will get, a j and… So, I can get a j; that is it. So, this is the whole concepts. 

So, we can do that. 
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So, basically, if I want to summarize case C, which we have seen so far, in terms of the 

leading Eigen functions, mode 1 and 2, along with mode and 5 and 6, form regular pair; 

modes 3 and 7 are anomalous modes of the first kind, that appear without forming pair; 

modes 9 and 11 are also anomalous modes of the first kind; mode 13 and 14 are 

somewhat different and that difference is obtained by noticing this. I will show you what 

they would look like. These are those a js that we have; that we can obtain from here. So, 



this is your a 1 and a 2 plotted together and you see, they form such a nice pair; they 

complement each other; time shifted, that is what you are seeing. 

This is your a 3 and a 3 is, got a very interesting behavior. Initially, after impulsive start, 

it has a large value, then, it goes to the other side, becomes negative, then, it remains flat; 

and then, once the linear instability starts, then again, it picks up and it settles over there. 

And, although, you see, recall what Noack said that, this is going to be present at all 

time; which is not true; you are seeing there. It is present at all time later in the 

equilibrium state, but also, this is not steady. We are seeing this fluctuation and this 

fluctuation is something like a Strouhal frequency. This is characteristic of that. So, you 

will get that. 

Now, a 5 and a 6 form this mode, that we can very clearly see. Then, a 7 was a 

anomalous mode of the first kind and once again, we are seeing the same thing. See, 

what happens is, when the linear instability is not there, they are, kind of flat, time 

independent; some nonzero values. 
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So, this value, being nonzero, had shifted up, call, I mean, really prompted Noack et al to 

call it as a shift mode; as if, it had shifted the whole thing by a data. Same thing about a 

7, that you are seeing here. Let us go through and see the other modes and then, we will 

find out what we are talking about. The next two were, you said are going to be 



anomalous mode of the first kind, that is your ninth mode and eleventh mode. This is 

also something similar, that you have seen. And, as you can see that, as you come, go to 

higher and higher mode, their contributions are coming close to 0. 
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So, when I represent this, this contribution level should come from the magnitude of m. 

What lambda gives there, is nowhere present here. So, we make that observation that, 

lambda determines the relative contribution. But what we are noticing here, when I 

represent the disturbance function, the relative quantity contribution would come from m 

and that is what you have seen. They are very close to 0. As you go higher and higher, 

their contributions are smaller and smaller. This is the interesting bit. I told you that, the 

thirteenth and fourteenth form pair, but they do not go like, some kind of saturation; they 

appear like wave packets. They are like wave packets. So, they are present in, some time, 

then it quenches there, then, again it picks up; and, if you would have done the 

calculation, again it would have come down, what happens, so on and so forth. 
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So, this is what we called as the t 2 modes. Now, you should, you understand, why we 

are calling this. In fact, in recent times, we have been looking at air fall aerodynamics. 

Yogesh is looking at that with great care and we are seeing some, different instability 

mechanisms have different foot prints; but by and large, this general classification is 

nearly universal. This is nearly universal. I will not be able to show it to you; I will give 

you the reference in the next class, but we have seen that, same type of properties. 
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Now, this is another picture, what we have done for case A. What was the case A? Case 

A was from 200 to 430. So, what you are seeing here, again the leading Eigen functions 

forming pair; this is your shift mode; and fifth and sixth again is a regular pair; and then, 

there is nothing in there; you go all the way upto thirteenth and fourteenth, which is the t 

2 mode, that we just now saw; similar behavior. So, this is what we are going to see. So, 

you understand that, there is a need to really, further explain, why and how this things 

relate. This is your case B, where we have just looked at the data set from 350 to 430, 

and you can very clearly see three pairs; that is it and that takes care of everything. 

So, if you are trying to exploit the flow, I mean POD analysis, in terms of flow control, 

etcetera, and if you are only interested in the steady state, then, probably taking a small 

such data set, once you have reach the equilibrium stage is quite good. And then, you 

will have to only worry about this very few modes and you should be able to control 

them to your advantage. But when it comes to understanding flow instabilities, it is 

always better that you take the full data set, because you do not, you want to explain how 

you have arrived here; how you have arrived here. In the next class, I will explain to you, 

what is the source of these anomalous modes? Why do they appear? That is rather 

important and this we have seen. 

So, let us make some observations, when we are looking at flow past a cylinder, we can 

easily understand the trend of the time variation of the paired modes at early time, as a 

disturbance grows from 0; it is not so, for the anomalous modes of the first kind, for 

which the amplitude functions vary very rapidly during the transient stage. This is rather 

important. So, basically, the shift that you are getting in the final state, the history lies 

there. 

So, that is why, it is necessary for you to take the full set; otherwise, you will be not able 

to say, why you have arrived at that particular equilibrium state; that shift has occurred in 

a transient manner. And, to generate POD amplitude functions from the Navier- Stokes 

equation is not so easy. What we have done here, we have obtained the solution; we 

calculated the disturbance vorticity and then, we calculated a of j. What some people 

have done, they have tried to put this back into the Navier-Stokes equation and to derive 

an evolution equation for a js. So, what will happen? Of course, you have all this modes. 

So, the basic intention is to convert the PDEs into ODEs; because your, space 

dependence is given in terms of your phis. 



So, once you have put in that information and integrated over the whole domain, then, 

you will get that. But there is a problem. If I am looking at, let us say, the Navier-Stokes 

equation, in u v formulation, then, I may have this kind of depiction for the velocities; 

what about the pressure? So, that is where some people have done some kind of a 

cardinal sin; they have actually omitted pressure terms and that is one problem. And, 

there is another problem, that will be taking about when we meet next time. 


