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So, now, we have been discussing about spatial instability, and in the context, we were 

looking at the final details that within the spatial instability problem itself, is there a 

possibility that time dependence exists. And, that is what we were doing in this part of 

the course, where we are talking about spatio-temporal instability, and we were 

following the Bromwich contour integrals.  
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And, in the Bromwich contour integrals, we just looked at few representative points. We 

performed the Bromwich contour integral along two contours, in the wave number and 

the circular frequency plane, and we investigated four representative points; point A 

corresponded to an unstable scenario; point B corresponded to the same Reynolds 

number, but significantly higher circular frequency, whereas, point D corresponded to 

the same Reynolds number, but significantly lower frequency. And, C is a point, which 

is a sub critical point, that is, this is for a Reynolds number of 300; while the other three 



cases are for Reynolds number of 1000. And, the fact that point A is unstable is 

represented by one of the negative alpha i; whereas, rest of the modes, all seem to be 

positive. We talked about the group velocities. We also talked about the signal speed; 

signal speed is what Sommerfeld started talking about, and finally, we did talk about the 

energy propagation speed. 
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This was what was proposed by Brillouin. And, in this context, we started looking at 

energy based receptivity theory. Please do understand that I emphasize, that, this is a 



energy based receptivity analysis; this is not your stability analysis. Why did I say that, 

because your governing equation for the disturbance energy, that we have written here, 

in Fourier Laplace formalism, is governed by this equation. And, this equation came 

from here, del square E d, which is a sub-function of the mean vorticity, the disturbance 

vorticity, the mean velocity and the disturbance velocity. 
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And, when you look at it, that this, there is a distinct forcing for this case, unlike the Orr-

Sommerfeld equation. Orr-Sommerfeld equation is a homogeneous; this is a 



inhomogeneous equation. So, this is the forcing term. So, once you solve the Orr-

Sommerfeld equation, you can see for yourself, what drives the energy. And, if you look 

at the corresponding homogenous equation, that is nothing, but the Laplacian. And, we 

know that Laplacian does not exhibit any instability, simply for the reason that this part 

does not have any time dependence. 
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If it does not have any time dependence, then, of course, you can talk of its instability. 

So, what instead, we are talking about the receptivity. So, if I prescribe some kind of a 

disturbance in the flow field, that will create the vorticity field, that will conspire with 

the mean flow to give this kind of a forcing on the energy. So, this is something, we must 

keep in mind, when we are talking about energy based approach that, this can at best, be 

a receptivity analysis; can be a stability analysis. 
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So, what we did was, we performed those integrals for those two points. The one below, 

is for the unstable frequency of omega naught equal to 0.1, for a Reynolds number of 

1000. The result that you are seeing here is at a height of 0.278 and at a terminal time 

which was allowed by the string of data that we took, is given by this. And, what you 

notice here, is a sort of asymptotically growing solution, merges with the leading edge of 

the wave packet. So, here, the existence of the spatio-temporal wave front and the 

asymptotic part of the solution are not distinct. Well, that is distinct for the stable case; 

for the stable case, what we see of course, the asymptotic part is decaying; but the spatio-

temporal part, which actually grows in space and time, continues to be there. And, you 

can see them very distinctly. If we would have aligned these two figures properly, we 

would have seen that, they would have matched and they would have been the same. 

And, this prompted us to comment in the last class that, this is perhaps very strong 

function of Reynolds number, and these two are for the same Reynolds number, but for 

different omega naught. But the spatio-temporal solution is, being a function of Reynolds 

number alone, and these two being same, they have a identical structure. So, this is what 

we commented, but at the same time, I also made the observation that, this needs further 

probing. 
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So, basically, in summarizing it, we have basically talking about the same thing, that 

when we are looking at the E d variation with x, we see that, that is much more smoother 

than u. The reason is, E has that V square by 2. And, well, I mean, this is not a quite a 

carefully made statement. What we are seeing, that we do not have a detached 

forerunner; we are not saying that there are no forerunners. So, please do understand that 

there is a detached forerunner; while for the point B, you can simply see the distinct 

detached forerunner. The rate, at which this asymptotic part, as well as the forerunner 

propagates, can be roughly estimated from the figure itself. We have the visual signature; 

from there, we can calculate this, and this was what was shown in the last column of the 

table; we just opened up [no audio from 7:04 to 7:14] mode 1, that is that unstable mode. 

And, it just so happens that if you do a Fourier analysis of the forerunner, that 

corresponds to the second mode, in terms of the wave number alone; because, you see, 

the second mode is a stable mode; however, we, what we see in our calculation, we have 

calculated all the way up to 800, and this spatio-temporal wave front kept on increasing; 

it is not a decaying thing, like the second mode. 
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So, even if I say, that in terms of wave number, it matches the second mode, it could be 

just pure coincidence. So, it is not a causal factor. And, what we found that when we are 

looking at stable system, like the point B or D, what we find, those have multiple modes, 

and the forerunner has identical, the energy propagation speed, as well as the signal 

speeds. And that, lies between the group velocity, between the values of the leading 

modes. For the stable system, we have a single mode alone; we do not see the forerunner. 

And, that case also, once again, I emphasize, was for a Re equal to 300. So, maybe it is 

such a strong function of Reynolds number, that for I equal to 300, we do not have a 

forerunner. 
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So, there is a distinct need for performing this kind of analysis for different Reynolds 

number, and see, how this forerunner behaves with time. Let me now, go over, and talk 

about a new thing. What is the new thing that we are talking about? We are going to talk 

about, completely a different aspect of instability. Now, there are two things that I want 

to highlight here; number one, that we are looking at here is, here, we are not any more 

talking about spatial instability. We are talking about systems, which display temporal 

instability. And, one such an instability is there. This is going to be distinctly different 

from spatial instability. In the spatial instability what happens? The disturbance washes 

off; it convects away. And, if we do not take a very very large domain, we do not get to 

see the disturbances growing very much. That is more, a sort of a limitation of our 

computational domain. If we probably would take much longer domain, then, we could 

see that it is growing too much longer time. 

Like, exactly what we just now finished our discussion on that, if we instead of talking 

512 points in the omega plane, if we would have taken, let us say, 8 times or 16 times 

more number of point, we could go over for much longer time. And then, if we also take 

a larger x region, we would see that the asymptotic growing part will keep on growing, 

because it is a linear theory. Linear theory does not tell you where to stop. It just simply 

tells you, it is unstable; that is about it. So, that is the second part, that when we have a, 

such an unstable system, then, what does non-linearity do? We clearly understand, one 

thing I suppose, you will agree with me full-heartedly, when I say that the disturbances 



cannot grow completely unbounded. Why do I say that, because the energy for the 

disturbance comes from the mean flow, mean flow has a finite energy. 

So, disturbance quantities cannot grow unbounded. In fact, the very phenomena of 

transition from laminar to turbulent flow, tells you something about moderation of non-

linearity coming into picture. The linear theory or the instability theory says the 

disturbance grows. Where does it stop? That is the non-linearity, comes into picture 

there. So, in the second part, what we are talking about, we are talking about temporal 

instability, and we are talking about a finite domain. And, if such a system is linearly 

unstable, what am I going to see? With time, it is going to grow forever?  And, I am 

doing real time plane calculation, not in the frequency plane, not by a Bromwich contour 

integral; suppose, I keep on doing for large time, what will happen? It will eventually 

block. Computationally though, for various systems that have been studied, which 

display temporal instability, we do not see such a thing; and one of the best example for 

this case is, a flow past a circular cylinder, a bluff body flow. 
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So, we are basically, next talking about, bluff body flow instability. If we are talking 

about this, our people tend to think that, this is entirely a different phenomena altogether, 

does not belong to stability study; but they try to always, approach this problem from the 

point of view of solving the full non-linear equations, so, Navier-Stokes equation. What 

do we see? Let us, first of all, identify what we see, and then, we should go about 



understanding what is going on. Let us say, we have a uniform flow, approaching this 

bluff body. Then, if I focus my attention on a particular point on the wake, what am I 

going to see? I am going to see something like this. If I plot the disturbance velocity, 

what I would see that initially it remains, then, it slowly builds up. And, once it builds 

up, it indicates some kind of a growth in time. When it shows the growth in time, the 

natural question that arises in our mind that - will this growth be forever? But what we 

notice, that it does not happen so; it actually, saturates. 
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And, this is where our prism discussion start. We are talking about effect of non-

linearity, and this effect of non-linearity was studied initially by Landau, the famous 

Russian physicist. And, he produced an equation, which is called the Landau equation, 

which will tell you about the amplitude of the growth of this disturbance, and that kind 

of, tells us that why and how this growing amplitude saturates. So, this is what we are 

talking about. This is related to another phenomena, which is often studied in 

mathematical physics, namely the phenomena of bifurcation. Bifurcation means what? 

Now, this is also, where some amount of misunderstanding prevails. Supposedly, I call 

this modulus here, as A; then, what we are seeing that, this A is a function of time. 
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But because of the mediation of the nonlinearity, I get a saturation amplitude. This, I call 

it as Ae, equilibrium amplitude. Now, what I could do is, I could plot this equilibrium 

amplitude versus Re. I could do it experimentally, I could do it theoretically or 

computationally, and I can measure it, Ae as a function of Re. What I would see, that up 

to some Reynolds number, this equilibrium amplitude is 0. What does it mean? This 

system is linearly stable. So, this kind of instability does not arise for those Reynolds 

number. Then, after that, slowly, this instability starts. There is onset of instability, and 

with the increase of Reynolds number, this equilibrium amplitude keeps increasing. And, 

Landau proposed an equation, which shows that, this equilibrium amplitude goes like 

this. So, it is like a parabolic variation, Ae versus Re. And, this point, is a point, where 

we have the onset of instability. So, what we are saying then, on this side, we have a 

linear stability; then, if I perform a stability analysis, linearly, it is stable. 

On this side, what I find, linear instability plus a non-linear saturation. This is the part 

that we need to understand. So, the point at which the instability first appears, what does 

it tell us, that if I am looking at an arbitrary Reynolds number, then, there are two 

possible solutions. What do these two solutions imply? This is what we are seeing there; 

this is what we have plotted. What does this imply? This implies there is no growth. How 

can it happen? Since we have studied so much on receptivity, you can give me an answer 

by saying, yes it can happen. Suppose, I do not have the corresponding input, I will not 

see the output. So, it is basically, this, that I can get this solution or that solution so; that 



means, the system from this point on bifurcates. It can have two solutions; one 

undisturbed solution; another is a disturbed solution. So, this point, at which this thing 

starts, is what is called as point of bifurcation. So, system bifurcates. In fact, you know, 

most of you have some exposure to various other aspects of fluid dynamical flow 

including, let us say, aerodynamics. 

Here, if you realize that if I am talking about a flow past an aero fan, which is at an angle 

alpha, then, what I can do is, if I increase this angle of attack and measure the lift 

coefficient, I see that it goes like this; then, it has a stall; but now, suppose, I reduce the 

angle of attack, what happens? It does not follow this; it comes on this. And, you know 

that if I go on the other side, I could have a similar scenario, but then, when I increase it, 

I again may not go along this. So, I could get this kind of a picture. What is it called, of 

course, you, all of you know, it is called hysteresis. So, there are many examples of 

physical system, which shows hysteresis, which tells you what? That for a given angle of 

attack, you can have three possible solutions; and which solution you belong to, this is 

dictated upon the rate at which your angle of attack has changed. If I started from angle 

of attack 0, I would be on the middle branch; but if I would have come to the same angle 

of attack, coming from this tall angle, then, I will be here, and if I go back and again, 

retrace the cycle, and now again, I am on the increase, then, I will be here. 

So, this is basically three possible solutions, and here, we are talking about two possible 

solutions. Well, this is a clear example of flow phenomena, which tells you the 

dependence of the flow on the time history, is it not. Where we have started, how we are 

going through that state, this is what dictates, whether I am going to on this branch or 

this branch or that branch. Here, the thing is slightly different. What it says, that if I am 

working on this Reynolds number, then, of course, I can have this unstable solution, 

saturated solution, disturbed solution, but I can also have this, depending on whether I 

have the corresponding input to the system or not. 
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So, please do understand that, this is what it is. When this breaks up, the solution goes up 

like this, it is at a quadrature; this is what is called as Hopf bifurcation. So, that is your 

Hopf bifurcation. There are other kinds of bifurcation, like Pitchfork bifurcation etcetera. 

We will not talk about them. We will keep our attention focused on bluff body flow 

instability and then, we will see, where we do go from here. 
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So, basically, when we are talking about non-linearity, effect of non-linearity and going 

to another saturation amplitude, etcetera, what we are talking about, we are actually 

talking about a linearly unstable system that goes to another equilibrium state. That is 

what happens here, that we do get this vortex shedding pattern, Karman vortex trait; that 

is a basically, that the next equilibrium periodic state. An oscillating pendulum, is also an 

example of equilibrium stage, and that is also a consequence of what was your original 

equilibrium state for a pendulum, to remain vertical in one place; you have disturbed it; 

then, it keeps going back and forth, and there is a tradeoff between the cause and 



response. You see, what happens, we see a basically, a disturbing force that is, the 

kinetic energy and potential energy does a perfect balancing act, and you get a constant 

amplitude oscillation, that is your pendulum. 
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It is also the same thing here, vortex shedding behind a circular cylinder. It is like a fluid 

dynamical pendulum. Do you see the connection, that here, instability starts off, which 

we have in the linear mechanism; then, the non-linearity starts coming into play; that 

provides a kind of a saturation to it. We will see it, we will shortly come to the Landau 



equation, and there is a perfect balance. And, you come to this from a one linearly 

unstable state to another equilibrium periodic state. 
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This is, of course, not generic for all flows, but it shows up very graphically in flow past 

bluff bodies, beyond the first critical Reynolds number. Now, this is the first critical 

Reynolds number, and I am, well, we have actually, by now, when this visuals were 

created two years ago, we were in the process of working out, that today we can very 

confidently say, the work is done, and we have shown that there is no such thing as a 

first critical Reynolds number. This again, is built into this picture, that whether I can 

remain here or I can remain there. 
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So, I will get this bifurcation, when I have that class of disturbance. Then, I could 

actually, consider a fluid dynamical system, where, this first bifurcation does not take 

place. If this is bypassed, then, I can continue to be here. And then, I can actually go to 

the second bifurcation. In fact, that is what we talked about in the title itself. When we 

talked about this a couple of years ago, people were not very sure, what we are talking 

about; what is this multiple Hopf bifurcation; people were only talked about Hopf 

bifurcation; and here we come, and we say, look, there need not necessarily be a 

definitive single bifurcation. 
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Because, that is what this bifurcation diagram clearly shows. I can bypass this first 

critical point, but then, there could be another class of disturbance, which triggers a 

second bifurcation, which can trigger a third bifurcation. And, let me just tell you, what 

you are going to see in advance, in this course that we have now established a scenario, 

where you would see multiple Hopf bifurcation, not only for this external bluff body 

flows, we have also shown it for internal flows. Wherever we have vertical flows, we 

have shown this; we have made a claim in one of our very recent work paper, which is in 

the press; there is a universality of this picture. 
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So, keep that in mind and then, we will go along, and we will see, how the drama 

enfolds. So, what we are saying that for flow past a bluff body, we can very graphically 

see this. Whenever we cross the first critical Reynolds number, and if there is sufficient 

disturbance in the back ground, we are going to see this. There is no doubt about it. But 

there was this experiment, done by one of students of Ludwig Prandtl, Fritz Homann. He 

did this experiment; he was very clever, far ahead of his time. What he did, he created a 

re-circulating tunnel, like what we have, the wind tunnels or water tunnels, people will 

talk of. Now, Prandtl probably suggested to him or they talked together and came out 

with the idea that they will build a tunnel with a completely different working medium. 

They used lubricating oil, which has a very very high viscosity. And then, in that re-

circulating tunnel, they put in a circular cylinder and did the experiment and their 

experiment showed that there is no vortex shedding upto Re equal to 65. 
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So, Homann's result showed a Re critical close to 65. Now, if you look at the literature of 

80s and 90s, there was a nice bandwagon. Everybody said Re critical was 45 to 47 and 

people said this based on computation. This is another example of abuse of computers; 

people ganged up together, and made a lot of hue and cry, saying that flow past a 

cylinder, critical Reynolds number has to be between 45 and 47. And, here was this 

result, though it was not published per se, but it was a thesis, and people did know the 

result. 

Because, those visualization results are in Schlichting’s book, are also in White’s book. 

So, two of the best known fluid dynamics book featured those results, but nobody was 

willing to reconcile between these two. Experimentally, you could go as high as Re equal 

to 65, and have no vortex shedding; whereas, here was another set of people, who were 

determined to say that, there is a universality, and this critical Reynolds number is about 

45 to 47. Like, now, where is the truth; truth is of course, covered, in the sense, various 

other experimentalist haves come out with different estimates of Re critical. For 

example, if you look at the book by Landau and Lifshitz, they did not show any 

documented results, but they claim that the flow past a circular cylinder that becomes 

unstable for a Reynolds number as low as 30 itself. Batchelor’s book also talks about, 

which also contains Homann’s result, Batchelor’s book also talks about, critical 

Reynolds number, somewhere around 40. And, there are any number of people who have 



done experiments, they talk about critical Reynolds number of anywhere between 40 and 

55 and so on and so forth. 

But no one actually, goes this high. And, I explained to you, why this high value was 

achieved. If you are working with a media of highly viscous fluid, then, what happens is 

that if there are any back ground disturbances, they are damped, because of viscosity of 

the medium. So, that was the unique thing, and it was only in paper, which we published 

in the last couple of years; we have shown the connection, what could be the reason. One 

thing is for sure, existence of the bifurcation diagram very clearly shows the role of 

receptivity; we cannot escape it. If we do not have the input disturbance, we are not 

going to see the response. And, that is what all this authors, all this experimentalists are 

talking about different Re critical, from the same point of view. And, to talk about an 

universal critical Reynolds number, in the range of 45 to 47, is a bit farfetched. 
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So, what we are going to do, now, we are now going to see, what really happens in this 

flow, and what was this Landau equation that we are talking about? Landau equation was 

conjectured by Landau. He did not actually give Reynolds steps in his work, but how did 

he come to that equation. Later on, this British mathematician JT Stuart, he did a very 

good bit of analysis with the help of Watson’s result. And, he showed that Landau’s 

equation actually comes about from the instability equation itself; the non-linearity 

comes from a self-interaction term, and that was a very good reason for showing this 



validity of Landau’s equation. So, Landau equation, although was written in a heuristic 

manner in 1940s, it took another 20 years, before it was formally shown, how it is to be. 

So, that is why, today we call that equation as Landau-Stuart equation. 
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See, the, he showed that we are addressing (( )), is one of instability, but when Landau 

proposed his equation, he was more interested in explaining how turbulence comes 

about. What is the scenario he was talking about, that you have a primarily unstable 

flow, that leads to temporal growth of disturbances; non-linearity comes into play and 

you get into another periodic state; that is your first bullet. Now, once you have arrived 

at an altered equilibrium state, that is also susceptible to disturbances. So, what happens? 

That could suffer an instability, that would be a secondary instability. And, that could 

lead to potentially, another equilibrium state, that can suffer another instability and so on 

and so forth. So, Landau’s view point in proposing this equation was that we are talking 

about such successive bifurcations and infinite number of such bifurcations or a very 

large number of such bifurcations, which leads a flow from laminar to turbulent state. 
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So, he understood the turbulent state has finite energy. So, it has to end in some 

equilibrium state. And, you also realize that what is going to happen. If we are talking 

about instability of an equilibrium state, the primary flow, the first instability, could have 

been on a steady flow. After the primary instability has occurred, what is the flow 

situation here? This equilibrium state is time periodic. So, a mathematical theory was 

developed quite earlier on; it is called Floquet analysis, Floquet theory. In Floquet 

theory, what you do, you study the instability of a equilibrium state, which is periodic. 

So, in a sense, what Landau was basically suggesting, is a kind of a primary instability 

followed by instability of periodic states; I am going from one periodic state to multiple 

periodic state and instability of multiple periodic state and so on and so forth, to 

turbulence. So, that was his scenario of turbulence. This is just a matter of record, it is bit 

of a story telling here that, in the 60s, people did come across, what was called as chaos 

theory, which showed that some of these flow phenomenon that we usually study, 

corresponds to very high Reynolds number. 

And, these high Reynolds number flows are susceptible to small disturbances. And, some 

of the mathematicians came out and talked about, what is called as a sensitive 

dependence on initial condition. And, in particular, (( )). He wanted to make it a little 

more dramatic, and he started talking about that so-called butterfly effect; the story goes 

according to this anecdote is that systems are so susceptible to small disturbances, that if 

a butterfly flaps its wings in Europe, it changes the weather in America. So, it is a kind 



of, a bit of a story, he wanted to sell it on a news magazine or coffee table thing, whether, 

it is Nature or Science does not matter, you have to shock the people; you have to give 

them some of this bylines, which sells. 

So, this butterfly effect, and all those things came about. Now the question is, following 

those ideas, people found out that, if you decompose, let us say, Navier-Stokes equation, 

if you decompose Navier-Stokes equation using Galerkin projection, then, this truncated 

models, are shown to have this kind of properties. And, this is where you may have heard 

of, Lorentz. He was a meteorologist working in MIT, and he came out with this, and he 

basically produced some solution of Navier-Stokes equation, where it was truncated to 

four modes. And, he showed that, this four mode system was very susceptible to 

disturbances, and this chaos of, was interspersed by period of quiet. So, you have in the 

parameter space, you have a quiet flow followed by chaotic flow, then, again quiet flow, 

again chaotic flow, and this kind of things happened. And, there were other 

mathematicians, who came along and then, they said, look, you do not have to wait for 

this infinite sequence of instabilities as was proposed by Landau. They said, three sub-

bifurcations are good enough, to take you from laminar to turbulent flow. 
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So, this was the kind of scenario with which we have grown up, in the last couple of 

decades. And it is very poignant, because people also tried to show this, with the help of 

fractal nature of turbulence, and this is the weak, you know, ((  )), he was one of the 



pioneering mathematician who worked on fractals, he just passed away. So, it is a kind 

of a scenario, I am just trying to give you a big picture, where we stand today, that, there 

were, lots of this to and fros have gone in. But please, do understand that our approach to 

this discussion that we are talking about, is rooted to instability. We wanted to show, 

what instabilities are for unstable fluid dynamical systems, and as far as this 

phenomenon is concerned, or which is shown here, what is the role of non-linearity? 

Here, the role of non-linearity is not accentuating instability, it is moderating the 

instability. So, that is why, effect of non-linearity here is one of moderation, not of 

destabilization. 

Now, Landau actually, interested, in trying to explain flows, which are known to be 

either completely stable, like Couette flow or pipe flow, we have talked about it, or let us 

say, in a channel flow, where the critical Reynolds number is known to be about 5772; 

but you do the experiment, as was done by Davis and White, in their proceedings, in 

Royal Society paper reported work; they found the flow in a channel becomes unstable 

as at a Reynolds number of as low as 1000. So, there is something that some of these 

flows suffer instability, while the linear theory says, they have to be stable. 
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So, whatever we see, that should be called as the sub-critical instability. So, Landau was 

developing this theory to explain sub-critical instability, but we explain only here, the 

super-critical stability; this is the case of super-critical stability. So, you are working on 



this side; so, flow has already become unstable, because you have crossed this Reynolds 

number; so, you are in the super-critical side and then, non-linearity actually saturates the 

amplitude. So, that is what we are talking about. 
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So, with this brief introduction, I think we can go ahead, and develop the Landau 

equation. What was done in Landau equation is that, if I am looking at the linear stability 

theory of steady basic flow, then, we know by now that we created large spectrum. So, 

the modes, let us say, they are independent and then, with the help of this modes, we can 

reconstruct the velocity perturbation in terms of this; this is your Galerkin projection, a 

time dependent function, time space dependent function, and we add the complex 

conjugate to make the whole thing itself as real. So, this A star, f star are nothing, but the 

complex conjugate of A and f. So, this is the usual way that we do. Now, the complex 

amplitude, when it has become unstable temporally, we could write that, A of t is some 

multiplicative constant times e to the power s j into t. So, what we are looking at, we are 

looking at the jth mode; and that has a growth or decay rate given by this complex 

exponent s j. Now, if this is the expression, then, I can differentiate it with respect to 

time; then, I will get d d t of A j is s j A j. This is what we will expect. Once I find those 

growth or decay rates as Eigen values, I can also, correspondingly find out the Eigen 

functions, and we can identify those f js with those Eigen functions. 



So, starting from a linear theory, I could get the growth decay rate, I could get the Eigen 

functions and I get this. However, this is your linear description of the system. What 

happens is, we can obtain a corresponding non-linear system, and use the same kind of 

Galerkin approximation, and we would be able to show that the evolution equation, 

evolution equation means, differential equation with respect to time for the amplitude A j 

would be given like this. So, this is your linear part; this is the additional non-linear term, 

which we have symbolically written as N j. And, remember now, we have a large 

number of modes. I have written here infinite, but you have already seen, for Blasius 

flow, it just so happens here, we have only three such modes. So, it is not necessary that 

you will have to write it up to infinity; this is just for sake of completeness. Now what 

happens is, the jth mode, not only depends on the growth or decay rate of the jth mode 

from the linear stability analysis, but it can be, also affected by other modes. And, if you 

think of your Navier-Stokes equation, where would this term come from? This term 

would come from, let us say, something like your Reynolds stress like term, here. So, 

there you can see that different modes can interact, and that is the source of this. That is 

what we are saying, the non-linear effect on the jth mode, created by all possible kth 

mode. So, this is the general formalism or ((unsorts)) we can talk about. 

(Refer Slide Time: 49:07) 

 

Now, this is where Landau did his magic. Landau said that, this N j of A k does provide 

the non-linear action of all the modes on the jth mode, including self-interaction. The 

mode by itself can interact with itself. So, what Landau suggested that, this N j of A k is 



equal to A j times mod A k square. However, if we now talk about, only a single 

dominant mode, like what we have seen for all the cases, flow past a flat plate, we had a 

single mode which dictated the dynamics. Then, what happens is, this could be only 

coming from A j times A j mod square and then, I will have this kind of equation. And, 

there is this multiplicative constant l by two. Please note that, this s that we obtained 

from linear stability theory, we are looking at temporal instability; so, it will have a real 

part and imaginary part. Same way, this constant l, also will have a real and imaginary 

part. This l is what is called as the Landau coefficient. And, what we could do is, we 

could substitute this s and l expression here, and obtain the evolution equation for the 

amplitude square; this will be like this. 

So, this is what was given in Landau’s paper. He did not say, where he got this equation 

from; he just simply said the non-linearity is such, that it would be like this; because, he 

knew that, this equation is a close form solution. And, we will talk about it in the next 

class in greater detail, but whatever we are discussing here, this was very nicely 

elaborated by Stuart. And later on, this is given in that monograph by Drazin and Reid. 

You can read that; you can also read the lecture notes that I have written, where we have 

shown, how we get this equation, and we make this assumption that there is a single 

dominant mode. 

And then, from there, we get, A, I could write it in terms of, in a polar form. Re to the 

power i theta, the R itself, I will call it as mod A. So, then, the governing equation for R 

will be like this, and governing equation for theta, will be like this. Landau actually 

completely missed this part, he never mentioned this. In fact, he wrongly said, you 

cannot even predict the phase. He has simply said, you can, at the most predict the 

amplitude and the equation would be given somewhat like this. So, I think this is where I 

would stop today, and we will begin from here tomorrow. 

 


