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We started talking about vortex individual instability as computed, and this was kind of a 

typical set of results shown for a computation, done in a domain like this. What we have 

basically, is a sharp leading edge flat plate. The flow is coming at 0 angle of a diac, and 

then, over and above in this computational domain, you have a discreet vortex that could 

be discuss or inviscid, it does not matter, that is conducting very far up. The 

instantaneous location of this vortex is indicated by an arrow like this; as you can notice 

there is an arrow here and so on.  

The top three frames show the stream line contours for the flow field, for which the 

calculation is started when this is far upstream in the computational domain, and then, as 

we go along, for example, this result is shown as, t equal to 62; the vortex is now in our 

field of view, inside the range of the computational domain given by this arrow. What 

you see as an effect of this is, there is a kind of a thickening of the shear layer. This is 

exactly what we said that you get - vortex is a contour clockwise one, then it will tilt to 

scar it out. That scaring effect, you can basically see, leads to thickening of the shear 

layer. If you look at it at little later time, this was t equal to 62; these are t equal to 82. 

You can see actually, what has happened; this scaring leads to a bubble formation, and 

since the cause is moving, the result in bubble also moves. 



(Refer Slide Time: 02:37) 

. 

That unsteady separation bubble, as it moves what it does? It creates an altered pressure 

gradient around itself, does it not? So, think of the following, if you are having a flow 

like this quiescent flow, well, the stream lines are somewhat like this. It just simply 

diverges because of the thickening of the boundary layer. 

Now, if I create a separation bubble like this, then what happens? Locally, on this side I 

am going to create a strong adverse pressure gradient; and that adverse pressure gradient 

will farther destabilize. 
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So, if this is a result due to a primary instability, then, the primary instability itself will 

cause space pressure gradient ahead of it, and that would lead to the secondary and 

tertiary and so on and so forth, and you can say what really has happened. As we saw in 

our analysis in the last class that a single convicting vortex creates an adverse pressure 

gradient ahead of it that leads to a major primary bubble forming, and you can see the 

distance of separation is quite ahead; but then, that itself creates a secondary and tertiary 

instability ahead of it, and this movement, actually, is very pronounced. So, what 

happens is once the primary bubble starts, you actually switch on a cascade process. This 

leads to a sequence of instabilities, and this is what you see, in this kind of dark blue 

shade, indicating locations of secondary and tertiary bubbles forming. 

If you look at it at a little later time, at t equal to 90, you can see the primary bubble has 

not moved very much; but look at the speed at which the secondary and tertiary events 

have occurred. You can also notice, the edge of the shear layer, which is given by the 

edge of this blue line, you can see that these are sort of lifted up; we call this as vertical 

eruptions. 

These individual bubbles indicate lump vortices. These lump vortices, as they all move 

down stream, are also picked up. These vertical eruptions are a trade mark signature of 

even, fully developed turbulent flow. 



We will talk about turbulent as you go along. You will see that even there, at each cycle 

of turbulence, you have various stages of flow development. One of the stages is called, 

the ejection stage, and during the ejection stage you do see such vertical eruptions. 

Basically, through this control numerical experiment, you can pick up those basic 

prototypical modules, which you expect to see even for fully developed turbulent flow. 

So that is what it is, and if this is your stream line contours, which shows little subdued 

effect, you can see much more magnified effect if you plot the vorticity contours, and 

that is what you are seeing here. 

Once you notice these vorticity contour plots, you can see this thickening of the shear 

layer at, t equal to 62; and here you can start seeing that effect of this primary bubble 

growing, leading to secondary and tertiary instabilities. Here, you could very clearly see 

these vertical streaks - the vertical eruptions. 
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This is exactly what one would see in a computation. Let me also tell you that, the 

Reynolds number, that was based on the displacement thickness, at this so if I look at 

this out flow- Re delta star, that is roughly about 472. 

So, what does that mean? Inside the whole domain that we are computing, the flow is 

sub-critical with respect to tollmien-schlicting wave; because we know that Tollmien-

Schlicting waves are generated at 520. So, the whole domain flow is supposed to be sub-

critical; but because of this steady forcing we can create a sequence of unsteady events, 

and that is what we call as bypass transition. We would note this very emphatically, that 

the flow is fully sub-critical in the computational domain, despite which, we are seeing 

all this.  

What you do basically is, effect of this convicting vortex is fed through by calculating 

the individual velocity of the inflow and at the top of the domain. You do not try to 

calculate what is happening in the out flow because, we do not know (( )) if there are 

some instabilities. If we say that the velocity induced here is due to some above 

interaction, then we are basically precluding all the events. So you never do that. Most of 

the time at the outflow, what you do is, you give a boundary condition, and you allow 

things to happen. 



We do such a thing while you fix the input disturbances at the inflow, at the top of the 

competition domain; and that you do by using 8.36(( )) of interaction. That is fairly 

straight forward. 
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Now, I told you that, at the outflow, you do not use induced condition due to the vortex; 

but what you do is, give a softer boundary condition, which is called here as, the fully 



developed condition, in the sense, we give the wall normal component of the velocities 

stream wise gradient, so xi is along the stream direction. 

So, V itself here is like your del psi del zI, am not writing the scale factor. There is a 

scale factor also involved. So, this is basically nothing but your H to V. Then when we 

are doing this, this is equivalent to something like this. 
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The secondary derivative of psi with respect to psi equal to 0 that is what we are 

applying there. We can also use the same thing in our stream function equation. What is 

the stream function equation? If we recall, we have this delta in xi of h 2 y h 1 del psi del 

xi plus del eta h 1 by h 2 del psi del eta, that is the definition of the vorticity times h 1 h 

2. 

So, in this equation also if you substitute this condition at the outflow that gives you the 

condition on psi derivatives with respect to eta; that is what you apply there. So what we 

are saying is that, we apply the vorticity boundary condition at the outflow. If I know the 

psi, I can calculate this from there; I can calculate the value of the vorticity at the outflow 

that satisfies the fully developed condition.  

(Refer Slide Time: 11:54) 

. 

This is one way, the other ways to do is, the Sommerfeld boundary condition. In the 

Sommerfeld boundary condition what we usually do is that, it is more aesthetically 

satisfying and is also useful. Any condition given like this, well, any variable equal to 0 

is what we call as fully developed boundary condition. What the name, the terminologies 

signifies- that the quantity under the investigation is fully developed; if you move any 

further it does not change any more, that is what fully developed condition means. 

Whereas, there is alternative way of looking at it; that if, as we saw, the vertical structure 

were moving out of the computational domain, it is not as if it is fully developed there.  



It is sort of a propagation phenomenon; and to address that propagation phenomena, if I 

look at some quantity, let us see the vorticity, then I will say that it is going as a one 

dimensional signal, and I could give some kind of a conductive velocity of that signal- V 

C, and that is going like this. This is what we call as, the Sommerfeld boundary 

condition.  

Once again, Sommerfeld proposed this; and it is used quiet extensively in computation. 

This is called Sommerfeld boundary condition, and some people also, well, call it as 

Radiative boundary condition, as if something is radiated outside. This is what you find 

in many commercial softwares also; they basically do this. What is the problem with this 

case? The problem is knowing what this V C is going to be. It is not like 1D convection 

equation that is a scalar quantity that you prescribe it upfront. 
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This is going to be something that is part of the unknown itself, because, as we saw in 

the, probably you can see the results, if we look at the last frame, if I look at it here, the 

vertical structure is going out; if it is going out then what is going to happen? What you 

find is that, at different heights you have different values of vorticity, and it is not 

necessary that it is going out. 

Like a scalar vorticity, the vector, it can have different orientations at each and every 

point, and it can go at different speed. This is going to be a function of eta which we do 



not an prime. There are many ways of handling it, one of the way that we have tried to 

do is, calculate the velocity at the previous time stream, at the whole edge. 
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At each point you calculate this, and then, you let it go out. This is what one does in 

terms of computation. These are important, these are not trivial issues. These are still part 

of research topics. We have seen is the incipient unsteady separation on the top frame, 

which is what we just now saw. That will indicate us the primary instability, and of 

course, in subsequent frames we could note secondary and tertiary events that is 

essentially induced by primary instability. This goes without saying that, we do not 

notice tollmien-schlicting waves on the vortices; those are formed in the wall essentially 

due to unsteady separation that is initiated by a steady convicting vortex in the free 

stream. 

This was a quite interesting flow field. That is why, if you recall, the Doligalski wrote in 

a review paper in 1994 that, how a single convicting vortex affects a flow? That is a 

matter of intense research, and that was not known. We just carried it on, and we our self 

referred satisfied, because this confirms our experimental observation. We do get the 

theoretical and computational verification of this. 
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Since this is all started by a single convicting vortex, we call it a vortex- inducing 

instability. If you go by the definition of bypass transition by of Markovin, this can be 

classified as one of the bypass transition mechanism. We have been pretty much active in 

this area for quite many years now. 

We do keep investigating it in various scenarios. In the first 2 papers, we did look at 

vortex inducing instability, and in the last paper we looked at, that is this paper, ((J FM)) 

we looked at the subcritical instability and attachment line of an infinite swept wing. 

We will talk about that, but before we do that, we need to talk little more about the 

instability mechanism. See, all this time I have explained to you the creation of adverse 

pressure gradient at this covering mechanism. That is all very good qualitative 

description. Can we formalize it?  
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This actually we did. We will carry on the discussion, and we will see what happens. The 

experimental and computational results clearly reveal the existence of the receptivity 

mechanism. You see, the flow is receptive, that actually induces the primary and the 

subsequent instabilities caused by a vortex migrating in the free stream at a uniform 

speed. 

So, to a distance the instability of the flow we must understand how the disturbance 

grows. When we talk about disturbance, this is where something important happens. 

How do you define disturbance? Those of you who may have used some package in 

computing turbulent flows, you would notice that, people use something called 

turbulence models; and one of the popular turbulence model is the k epsilon model, and 

the k stands for the turbulent kinetic energy, and epsilon is a dissipation. 

So, what happens is the turbulence community? For say, had been looking at the 

turbulent kinetic energy. Both of fresher was actually brought in this discussion. In this 

book by Landahl and Mollo-Christensen, it is called Turbulence and Random process in 

Fluid mechanics; a very nice book, very thin one. Very extremely enjoyable, if, one is 

interested about chaos and turbulence. This is a very short description of the same thing. 

What caught our attention was, the emphasis of these two authors, that, if you really 

want to understand transition and turbulence of incompressible flow, then, you better 

look at the total mechanical energy, just do not simply avalon on the disturbance kinetic 



energy away. This is a wrong way to go. Well, we were also aware of some of the 

discussions Markovin had made in a paper in 1991. 
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It was a little heuristic, it was not very rigorous. Markovin suggested that, what we had 

seen, all that sudden unsteadiness appearing, could be due to some kind of shear noise, 

and that, try to look at it by looking at the Poisson equation for the static pressure. What 

we are intending to do here is, go away from what Markovin suggested, but instead 

follow the lead of Landahl and Mollo-Christensen. We developed an equation for the 

total mechanical energy directly from Navier-Stokes equation, without making any 

assumptions, what so ever. Then we talked about this disturbance field, separately from 

the equilibrium flow, and then, tried to follow what disturbance the mechanical energy is 

to. 
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Let us see what it is. Basically, what we can do is, derive this equation 5.1, that you are 

seeing in front of you. How does it come about? This comes about, as, I promise to you, 

that it will appear directly from the Navier-Stokes equation without making any 

assumption. 
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Let see how we go about doing it. This is arrived at, in the following manner. Look at it 

this way, that, your Navier-Stokes equation is given like this. The local acceleration, 



convicting acceleration, that is balanced by the pressure gradient term, and then we have 

the viscous if (( )). Now, let us write down the alternative form of this Navier-Stokes 

equation. 

So, this is your Navier-Stokes equation, what we call as the primitive variable 

formulation. Let us write out the rotation in form of Navier-Stokes equation. I will just 

simply write NSE to indicate the Navier-Stoke. So, what we do in this is try to get this. 

We use this vector identity, this is the vector identity. There is the no issue with that. So, 

if a use this over here, what I am going to get is this - del V del t. From here, what is 

this? Del cosV is the vorticity. So, I could write this as, V cross omega. This term that I 

have here, I could put it on the right hand side. What I am going to get? There is already 

a minus sign; this also comes with the minus sign. 

So, I could write it like- speed by rho plus is called by 2. That is this, and then we have 

this term as it is. Now, this itself is your total mechanical energy, if, you do not add any 

body force, etcetera. 

It has two components- a pressure head and the kinetic head. This is also how you get 

any of Bernoulli’s equation. In fact, from here itself one can derive the Bernoulli’s 

equation. You can see how to do it; drop this term out, and then you say flow is, say, 

rotational or you follow along a stream line. Then if you follow along stream line this 

term will also contribute nothing. A steady flow, so this goes away. 

If the spatial gradient of this quantity is 0, this must be constant everywhere. That is the 

way we come to the Bernoulli’s equation. However, if I define this quantity itself as E, as 

we have done here, p by row plus V square, I wrote V dot V by 2. That is our total 

mechanical energy. Now what you do is, take a divergence of this equation. So, if I take 

a divergence, what will happen? Del del t of del dot V is incompressible flow, so that 

goes away. So, there is nothing. I am going to get there on this side, then I am going to 

get simply, del dot V cross omega, and on this side, on the right hand side I have, minus 

del dot del. That will be the Laplacianand. What about this? I am taking again a 

divergence, so, that could simply just go away and we will not get this. 
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So what we have is essentially this. So, del square E is equal to del dot V cross omega. 

Just simply use again some vector identity - del dot a cross b, and you can write it down. 

You get this equation, so you can see what is going to happen now. This is a very 

straight forward equation that we have - del square E, is nothing but- del dot V cross 

omega. That we can simplify again, using the incompressible flow assumption. There 

would be many terms, 4 terms or 2 terms will drop out, and we will have only 2 terms 

left behind, that will find del cross V dot omega and minus V dot del cross omega.  
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This itself is again- omega dot omega minus V dot del cross omega. So, that is your 

equation 3.51. That is how we can derive it. Now, for the total field what we could do is, 

of course, we could simplify it little further. What you are noticing is this part. What is 

E? E is something like, your E rotational part, it is the energy; it is got nothing to do with 

rotational aspect of it. On the right hand side, it is driven by the rotationality of the flow. 

This is how the vorticity field interacts with itself. Of course the velocity in the vorticity 

field interacts. That is what we are looking at, that, the instability is related to the 

rotationality of the flow and the instability is driven by the right hand side. 

How the energy is going? Whether it is going to grow or decay depends on what this 

right hand side is doing. Now what you could do is you could again appeal to the giants. 

Sommerfeld in writing a book on partial differential equation in 1949, he talked about 

the properties of Poisson equation in the context of heat transfer. 

He said that, if I write the Poisson equation for the temperature field, then, if the right 

hand side quantity is positive, it is going to be a sink of heat and if the right hand side is 

negative then it is a source of heat. 
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We are any way talking about energy, so we can draw the analogy, and look at the right 

hand side, and what the right hand side is doing; because that is what is driving. That is, 

what comment we make, that is what you are looking at - del square E. The distribution 



of E, the boundary value problem is determined by the forcing on the right hand side. So 

basically, we can follow the evolution of E by just simply looking at what the right hand 

side is doing with time. 
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We are interested not only on the total mechanical energy, but we want to find out is how 

the disturbance energy is growing. So, what I could do is, I could split the total energy in 

terms of a mean part plus a disturbance. I could do it, is it not? Once I do that, and I 

substitute it here, then on the left hand side I am going to get del square E n plus epsilon 

E d, that is that. On this side, what I am going to get is going to be, omega m, write it in 

lower case, epsilon omega d, that is the same thing. That is the first part, and the same 

way I could also split the velocity field, into mean and disturbance. 

This is the equation now. Of course, order one quantity should balance with order one 

quantity. So, if I remove all the order one quantity, what am I going to get on the left 

hand side? Well, I have this - the order epsilon quantity on the left hand side. What about 

here? Omega m dot omega m that was the mean part, and that is gone. So we do not 

worry. Omega m will interact with this, and that will be one side of term, so that I will 

get omega m dot omega d.  

What about this? This into this also, will give me the same thing. So I get twice of that. 

In addition I am simply, for the sake of writing, not leaving out anything. This is the 



order epsilon square term. How the disturbance field interacts with itself? That is also 

there, and what about here? The mean part will go away with V m dot del cross omega 

m, so that we do not worry about. We look at this part, that we give as epsilon V m dot 

del cross omega d. This into this, and now this into this also, I will get epsilon V d dot 

del cross omega m. That is this part, and then of course, we will also have the quadratic 

nonlinearity, that will be this.  

What you are noticing, of course, you can drop out all the epsilons, and then you are 

going to get this term. So, I will write here, 2 omega m omega d. There would be this 

term, and these go away, and this. What you see as the equation 2 there, 5.2, has all the 

terms; only thing is we did not write, these as the order epsilon, but that is implied. This 

term is a lower order quantity, and so is this term. 
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If we want to be consistent, we could drop this out, and that will be your corresponding 

linear analysis. This is how we perform linear analysis. So basically, this is the thing. 

What you are noticing though is that, the disturbance energy is dictated upon how the 

mean vorticity interacts to the disturbance vorticity 

In the case of all our numerical and experimental investigation, you already have a mean 

flow vorticity distribution that is the boundary layer vorticity. With the boundary layer I 

can have a vorticity distribution. Now, over and above, this disturbance vorticity omega 



d is going past it and has its foot print there that is interacting there. That is one sort of a 

player, in dictating what happens, and we have seen that it depends on the sign. 

What we have said is that, if I have a flat plate, I have vorticity of one sign, and then if 

the vorticity is positive, then I get something that would give me a dominant quantity 

from here. If that dominant quantity happens to be a negative quantity, then we will have 

a source of disturbance energy. 

Now, you can see how this whole thing comes about. This is the primary term, look at 

this; this is a lower order term. To begin with, in the primary stage this could be 

suppressed, not thought about as important. It would come into play, once you are 

looking at secondary and tertiary instabilities. 
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This equation, as you are noticing here, brings out certain features that we said- how the 

mean and the disturbance vorticity fields interact with each other. That would probably 

determine your concept itself, the primary instability that we talked about. So, to really 

make use of this equation, what we need to know is- what is our equilibrium flow or the 

mean flow. Mean does not necessarily mean that we are looking at only a steady flow it 

could also be an unsteady flow.  

That is what we are saying, that once you have the where wiggle of describing what your 

equilibrium flow is, whether it is steady or unsteady, you can use this equation to study 



its stability or instability. Do you see the quantum leap from what we have done with 

Orr-Sommerfeld equation? We needed a steady flow; we needed to make it parallel; and 

all kinds of assumptions limited our visibility. Here we are not saying that. We are ready 

now, to study the instability of an unsteady flow or mean flow. That is what is pointed 

out here. You can study both steady and unsteady flows. It does not restrict us.  

This equation is very generic because we started off from Navier-Stokes equation. We 

did not make boundary layer assumption; we did not make parallel flow assumption; we 

did not talk about linearity; none of these things have come about. So, this is the most 

generic thing that could have happened. If it is indeed so, then I should be able to get 

what others have gotten with those limited approximations. How you get Tollmien-

Schlicting wave? That should also be buried in this information, and indeed, we did 

show it in a paper in physics of fluid, and a paper in physical review letters that, you 

could actually make use of this equation, and explain the occurrence of Tollmien-

Schlicting waves too and that has been done. Thankfully! 

Now, we have really scanned the whole horizon. Then we can show that Orr-Somerfield 

equation information is also embedded in this equation set. Now, if we look at the 

computational data, we know the flow was evolving with time; but in the initial stage 

when the vorticity was very much upstream, ahead of the flat plate, then the flow was not 

changing with time. 
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So, if we take one such snapshot of our representative mean flow or undisturbed flow 

that is subsequently perturbed by the convicting vortex, then we can make use of this. 

What we can do is, we can calculate the disturbance quantity because, when we are 

solving the Navier-Stokes equation, we are solving for the whole quantity. We are not 

solving for the mean separately or disturbance quantity, so what we have is the total 

field. 

Now, if I identify a so called equilibrium flow, which is, let say the solution at t equal to 

0 then, from the instantaneous solution I can subtract that. That will be my imposed 

disturbance, so that is this. The disturbance quantity is, at any time, could be obtained by 

subtracting the mean flow from the instantaneous solution of the Navier-Stokes equation. 

This is as simple as that. Now, with the help of the mean and disturbance quantity I could 

really compute the right hand side of that disturbance energy equation that we have 

written here. What we did and what we continue to do is, not worry about solving this 

Poisson equation which you can always do, but what we would rather like to do is, get a 

qualitative understanding of the ensuring instability, by working out the right hand side. 

 So, if I am solving the stream function vorticity field equation, I have- omega m plus 

omega d. From there I can split them out. I have the velocity field from the stream 

function equation that also, I can split into V m and V, and then I can work out the right 

hand side. Once I have the right hand side, I know that using Somerfield’s idea, looking 

at the sign of the right hand side; I could say where the disturbance energy sources are, 

or where it is working as a sink. That is interesting! 
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Now, this is what we have plotted here. We calculate the right hand side and we do a 

contour plot. What is the legend about this plot is that, darker blue shade implies these 

sources of energy. So, those are the streaks along which you get negative values, and 

what you notice is that, this is the leading edge of the plate. So, leading edge of the plate 

is one location where you see disturbance sources getting created. 

However, you also notice that, what is being created at the leading edge does not come 

inside, it kind of stays outside the shear layer. This is more or less the edge of the shear 

layer. So, it remains outside. The leading edge point, it is quite well known for a long 

time, and that has some role to play in flow instability, and that is what we are also 

seeing. Evaluate this have but it stays out side. 

We also have a second sight, which is about 20 delta star from the leading edge. That is 

where I see another, more intense, source of disturbance energy. As I told you, this 

calculation is all for subcritical domain because, the Re delta star here is 472. So, despite 

that, we are seeing that, convicting vortices creates all kinds of disturbance quantities 

which leads to an interaction, given by the right hand side, and that shows 2 sides of 

instabilities. There is one vorticity field, and there is another vorticity field. They can 

also interact, and you will start noticing that a thing is happening; there is interaction 

between these 2 disturbance sources- one starting from the leading edge and another is 

somewhere in the middle of the domain. We did talk about those vertical eruptions; you 



can see that, those are responsible for linking these 2 sources. These vertical eruptions 

actually build a bridge. 

You notice what it does. This is a discreet event, but once this discreet event is created, it 

creates a link; and then, the one here actually leaves off, and this seems to be inhabitant. 

This is what you are going to see as a sequence of instabilities happening like this. So, as 

if the leading edge disturbance seems to feed energy here, and that, basically reinforces 

disturbances that were there on the flat plate. 

One thing that we realize in studying a flow field of this kind is, if you are doing 

computing, you have no choice but to take the leading edge. There are many people who 

have tried to compute the flow by excluding the leading edge. If you exclude the leading 

edge, you are not going to pick this up. So, this is rather very crucial, that was the reason 

that we computed the flow field including the leading edge. 
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We can make the following observations that, at early times we know 2 sides from where 

instability originates- they are at the leading edge of the plate and a location more than 

20 delta star from the leading edge of plate, this we have noticed. We also noticed that, 

leading edge instabilities are weaker and the disturbance energy sources are active only 

outside due to this weak instability. What happens is the other sight that grows in the 



interior, the shear layer, is stronger and that gets stronger with time. Little before this 

time, we saw those snapshots at 62, 82 and so on and so forth. 

So, little before 80, we start seeing an eruption coming out of the wall, and hit those 

upper deck of the disturbance; that is what we have called as, the vertical eruptions. Once 

that happens, that creates a kind of bridge between this 2 disturbance sources. This is 

exactly what people have talked about in fully developed turbulent flow also. During the 

burst sequence of fully developed turbulent flow, people do see some kind of vertical 

eruptions, and that is the bridge between the 2 energy sources, via the eruption and this 

creates a kind of spike. 

Remember, we talked about Brinkmen Walkers investigation in the cross flow plane of a 

fully developed turbulent flow. So, what we are seeing here in the stream wise direction, 

we can do sort of an isolated analysis on the cross flow plane, and there also we will see 

some spikes forming. 

You do see these kinds of things in fully developed turbulent flow. I just would like to 

emphasize upon all of you that, why we did not study the turbulence the way people 

study turbulence, because, what you see in fully developed turbulent flow is in the 

genesis - how it all originated. 

So, that is why it is much more productive, that you try to take a composite picture of the 

whole thing by studying of in the primary instability, all the way down, and that is what 

we are also talking here, that even while we are studying instabilities, we can see some 

of these elements which people have found out by simply focusing up on turbulent flow 

itself. 
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. 

This kind of a controlled experiments, controlled numerical stimulations does in 

tremendous dividend, and we should be keeping this thing in mind. You have already 

seen in the stream function and vorticity contour plots, that the spikes were noted. We 

did note that, those spikes were nothing but your secondary and tertiary instabilities. We 

also notice that, our visualized instability shows that the disturbance energy sources 

interact with each other downstream, which actually determines the asymptotic state. 

So, what we are going to see for downstream, that information is built in this initially 

interaction itself; that is what I say that, it is always necessary that you must include the 

leading edge in computing unstable of transitional flows. Otherwise, what will happen is, 

the top disturbance source was kind of creating a shield, it was trying to shield the 

inviscid flow outside, with this viscous flow inside. 

If I do not take that leading edge, then I will just simply get this unimpeded spike stage. 

This has been done by those couple of papers that we talked about in the last class also- 

Peridier, Smith and Obabko. They did write couple of papers in JFM, and they did see 

that this spike, those having modes and they actually computation broke down. 

So, they concluded from that, that, if the there are elements of vertical eruptions, those 

eventually leads to turbulence; but they are on the conservative side, because, they do not 

see the moderation due to the presence of the leading edge, and their break down is 



rather spectacular. There was also another computation done by Obabko and Cassel later, 

at the same issue of not including the leading edge. 

We must also point out another aspect of the present energy based instability theory, that 

if I look at this equation, this is a like a force vibration problem. The quantity of interest 

is E d that is forced by the right hand side. So, if I am trying look at the transfer function, 

what should look at? I should look at it without the excitation; that means I should look 

at it without the right hand side. Basically, I will be looking at a Laplacian of E d, as a 

transfer function of this disturbance energy, and what you notice is that, nobody has 

really reported from a Laplacian operator that it can lead to some kind of a scene for 

instability. 

So, by itself intrinsically this is not unstable. Until and unless you have the forcing in the 

right hand side, nothing would happen, because, the governing equation for E d is del 

square E d equal to 0, that is the point we are making here. The vortex induced instability 

is completely driven by interaction of velocity and vorticity field. 
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. 

So basically, what we are noticing is the rotationality, forcing the issue through the right 

hand side to determine what happens to a scalar quantity like energy. See, this is 

different from what Markovin conducted. Markovin did not talk about this kind of 

equation; he was talking about a Poisson equation for the static pressure, and he added 

lots of time in the right hand side, and he called those as a shear noise terms. This is a 

complete consistent picture. So, this is what mode? I do not know whether you have 

noted the issue or not, that, the main issue is really how energy is exchanged initially 

between the mean and disturbance field. This is clearly brought out by this term, and this 

term. 

So, how the mean is reacting with the disturbance field? That is what we are getting here. 

It is also noted that, during the later stages of bypass transition large coherent vortices 

are found inside the shear layer. We saw those and we called them as unsteady 

separations or the vertical eruptions. There are coherent vortices people have been 

looking at it for a long time in turbulent flows. So, we basically would look at this 

coherence structure using proper orthogonal decomposition later in this course. We will 

talk about it in the next class, we will begin from here. 

 

 


